\hat{p} r $\sigma \hat{j}e$ c $au^{_{152}}$

Phase 26

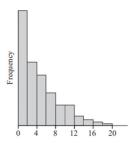
Tech Free

Question 1

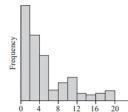
QUESTION 10

A random variable is drawn from a population with the distribution shown in the histogram.

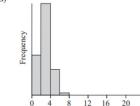
Simple Familiar Technology Free



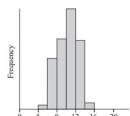
A number of samples of size 10 were randomly selected from this distribution and the sample means, \overline{x} , were recorded. The histogram that most likely represents the distribution of the sample means is



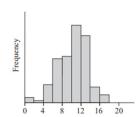
(B)



(C)



(D)



Question 2 QUESTION 5

A confidence interval for a parameter is a range of values within which the

Simple Familiar Technology Free

2023

- (A) sample estimate of the parameter always lies.
- (B) sample estimate of the parameter never lies.
- (C) parameter always lies.
- (D) parameter never lies.

Question 3

QUESTION 12 (5 marks)

Simple Familiar Technology Free

Given
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & 2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} -1 & -1 \\ 0 & 3 \end{pmatrix}$, determine \mathbf{X} in the matrix equation $\mathbf{X}\mathbf{A} - \mathbf{X}\mathbf{C} = \mathbf{B}$.

Question 4

QUESTION 15 (5 marks)

Simple Familiar Technology Free

The sum of a geometric progression with n terms, where the first term is 1 and the common ratio is r, is given by

 $1+r+r^2+r^3+...+r^{n-1}=\frac{r^n-1}{r-1}$ (for $r \ne 1$).

Prove that this rule is true $\forall n \in Z^+$ using mathematical induction by completing the steps of the proof as indicated.

a) Initial statement:

[1 mark]

Assuming the rule is true for n = k,

$$1 + r + r^{2} + r^{3} + \dots + r^{k-1} = \frac{r^{k} - 1}{r - 1} \ (r \neq 1).$$

b) Inductive step:

[3 marks]

c) Conclusion:

[1 mark]

Question 5

QUESTION 18 (6 marks)

Simple Familiar Technology Free

A particular solution to the differential equation $\frac{dy}{dx} = \frac{x}{(x^2 + 1)\tan(y)}$, where $x \ge 0$ and $-\frac{\pi}{2} < y \le 0$, passes through the origin.

Determine this solution in the form x = f(y). Leave your answer in simplified form.

Question 6

QUESTION 19 (7 marks)

Technology Free

The function f(x) passes through the origin.

2022

The gradient function of f(x) is defined as $g(x) = e^x \sin^{-1}(e^x)$.

Determine f(x).