\hat{p} r $\sigma \hat{j}e$ c $au^{_{152}}$

Phase 24

Simple Familiar

Technology Free

Simple Familiar

Technology Free

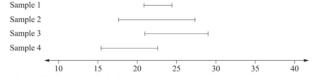
2022

Tech Free

Question 1

QUESTION 9

The slope field for the differential equation $\frac{dy}{dx} = y - x^2$ is shown.


The solution curve to the differential equation that passes through the point (3,-5) also passes through point

- (A) P
- (B) Q
- (C) R
- (D) S

Question 2

QUESTION 5

Four random samples of different sizes were taken to estimate a certain population mean, given a known population standard deviation. A 95% confidence interval was calculated for each sample.

Which sample used the largest sample size?

- (A) Sample 1
- (B) Sample 2
- (C) Sample 3
- (D) Sample 4

Question 3

QUESTION 9

A random variable X is normally distributed with a mean of 36 and a standard deviation of 4.

The respective mean and standard deviation of the distribution of \overline{X} from repeated random samples of size 9 are

(A) 4 and $\frac{4}{9}$

- (B) 4 and $\frac{4}{3}$
- (C) 36 and
- (D) 36 and $\frac{4}{3}$

Question 4

QUESTION 2 Simple Familiar
Which statement regarding sample means is true? Technology Free

- (A) The distribution of X is always normally distributed.
- (B) The distribution of \overline{X} is always normally distributed.
- (C) The value of \overline{x} changes when different samples are selected.
- (D) The value of μ changes when different samples are selected.

Question 5

QUESTION 13 (5 marks)

Simple Familiar Technology Free

Simple Familiar

Technology Free

Given $z \in C$, where $z \neq 0$, prove $\frac{|z|}{z\overline{z}} = |z^{-1}|$

Question 6

QUESTION 17 (7 marks)

Complex Familiar

An object of mass 2 kg is moving with a constant velocity (m s⁻¹) of $\mathbf{v} = 3\hat{\mathbf{i}} + \hat{\mathbf{k}}$.

Technology Free

At an instant, two forces (N), $F_1 = 5t\hat{j} - 3\hat{k}$ and $F_2 = -t\hat{j} + \hat{k}$, act simultaneously on the object for t seconds, where $0 \le t \le 2$.

Determine the magnitude of the momentum of the object when t=1.

Question 7

QUESTION 18 (6 marks)

Complex Unfamiliar Technology Free

This differential equation can be used to determine the current I (amperes) at time t (seconds) with voltage V (volts) in an electric circuit containing a resistance R (ohms):

$$k\frac{dI}{dI} + RI = V$$

where k, R and V are positive constants and $t \ge 0$.

Assuming that there is no current in the electric circuit initially, show that the size of the current can never be greater than $\frac{V}{P}$.