\hat{p} r $\sigma \hat{j}e$ c $au^{_{152}}$

Phase 17

Tech Free

Question 1

OUESTION 7

The diagram shows a slope field.

Simple Familiar Technology Free

The differential equation represented by the slope field is

(A)
$$\frac{dy}{dx} = \frac{5y}{x}$$

(B)
$$\frac{dy}{dx} = \frac{5y^2}{x}$$

(C)
$$\frac{dy}{dx} = \frac{5y}{x^2}$$

(D)
$$\frac{dy}{dx} = \frac{5y^2}{x^2}$$

Question 2

QUESTION 12 (6 marks)

Given $z_1 = a + bi$, $z_2 = c + di \ \forall a, b, c, d \in R$, and $z_2 \neq 0$, prove the identity

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

Question 4

QUESTION 13 (6 marks)

a) Use partial fractions to determine $\int \frac{22}{(2x-3)(x+4)} dx$

Simple Familiar [4 marks]

Technology Free 2022

2022

Simple Familiar

Technology Free

b) Use the result from Question 13a) to determine $\int_{-3}^{0} \frac{22}{(2x-3)(x+4)} dx$

Express your answer in simplest form.

[2 marks]

Question 5

QUESTION 17 (5 marks)

Complex Familiar

The region between the *x*-axis and the curve of the function $y = 1 + \sin(2x)$ for $0 \le x \le \frac{\pi}{2}$ is rotated about the *x*-axis to form a solid of revolution. Technology Free

Determine the volume of this solid. Express your answer in simplest form.