\hat{p} r $\sigma \hat{j}e$ c $au^{^{152}}$

Phase 15

Simple Familiar

Technology Free

Simple Familiar

Technology Free 2023

2023

Tech Free

Question 1

QUESTION 2

Consider the proof of the following proposition using mathematical induction.

$$\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2) \ \forall n \in Z^{+}$$

An appropriate assumption statement within the proof is

(A)
$$\sum_{r=1}^{k} k(k+1) = \frac{1}{3}k(k+1)(k+2)$$

(B)
$$\sum_{r=1}^{k} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$

(C)
$$\sum_{r=1}^{k} r(r+1) = \frac{1}{3}k(k+1)(k+2)$$

(D)
$$\sum_{r=1}^{k} r(r+1) = \frac{1}{3}n(n+1)(n+2)$$

Question 2

QUESTION 3

One solution of $z^3 - z^2 - 7z - 2 = 0$ is z = -2.

Which equation could be used to determine the remaining solutions?

(A) $z^2 - 3z - 1 = 0$

(B) $z^2 - 3z + 1 = 0$

(C) $z^2 - z - 1 = 0$

(D) $z^2 - z + 1 = 0$

Question 4

QUESTION 15 (4 marks)

Use partial fractions to determine $\int \frac{4x-17}{x^2-x-6} dx$, where $x \in R$, $x \neq -2$, $x \neq 3$.

Simple Familiar Technology Free 2021

Complex Familiar Technology Free

2020

Express your answer in the form $\ln |f(x)| + c$.

Question 5

QUESTION 17 (7 marks)

Determine the smallest positive value of *a* given

$$\int_{-a}^{a} 1 + \left(\frac{\sec(2x) + \tan(2x)}{\csc(2x) + 1}\right)^{2} dx = 1$$