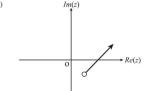
\hat{p} r $\sigma \hat{j}e$ c $au^{_{152}}$

Phase 11

Simple Familia

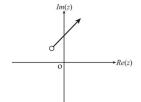
Technology Free

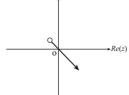

Tech Free

Question 1


QUESTION 10

The subset of the complex plane that represents $\arg[z+i-1]+\frac{\pi}{4}=0$ for $z\in C$ is


(A)


(B)

(C)

(D)

Im(z)

Question 2

QUESTION 8Use the substitution $u = \tan(x)$ to determine $\int \tan(x) \sec^2(x) dx$.

Simple Familiar Technology Free 2022

Simple Familiar

Technology Free

(A) $\frac{1}{2}\tan(x)+c$

(B)
$$\frac{1}{2} \tan^2(x) + c$$

- (C) $\tan(x) + c$
- (D) $\tan^2(x)+c$

Question 3

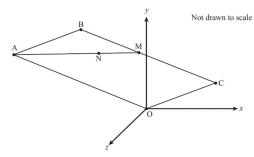
QUESTION 4

When using proof by mathematical induction to prove De Moivre's theorem expressed as $(r \operatorname{cis}(\theta))^n = r^n \operatorname{cis}(n\theta) \, \forall n \in \mathbb{Z}^+$, which statement would be correct in the proof of the inductive step?

(A)
$$(r \operatorname{cis}(\theta))^k = r^k \operatorname{cis}(k\theta)$$

(B)
$$(r \operatorname{cis}(\theta))^k = r^{k+1} \operatorname{cis}(k+\theta)$$

(C)
$$(r\operatorname{cis}(\theta))^{k+1} = r^{k+1}\operatorname{cis}(k\theta+1)$$


(D)
$$\left(r\operatorname{cis}(\theta)\right)^{k+1} = r^{k+1}\operatorname{cis}\left((k+1)\theta\right)$$

Question 4

QUESTION 15 (6 marks)

Simple Familiar Technology Free 2020

The points O(0,0,0), A(-6,2,-2) and C(3,1,2) are represented in three-dimensional space in the diagram.

OABC forms a parallelogram in three-dimensional space.

a) Determine the coordinates of B.

[1 mark]

M is the midpoint of BC.

b) Determine the vector that represents \overrightarrow{OM} .

[1 mark]

N divides AM in the ratio 2:1.

c) Determine the vector that represents \overrightarrow{ON} .

[2 marks]

d) Use a vector method to show that O, B and N lie on a straight line.

[2 marks]

Question 5

QUESTION 19 (7 marks)

Complex Unfamiliar Technology Free

The velocity vectors of two objects A and B (in m s⁻¹) at time t (in s) are given respectively by

$$v_{A} = 6\sin(3t)\hat{i} + 6\cos(3t)\hat{j}$$
$$v_{B} = \cos(t)\hat{i} - \sin(t)\hat{j}$$

Objects A and B are initially at (-2, 0, 2) and (0, 1, -1) respectively. Determine the position of Object A when it is 4 metres away from Object B for the first time.