Phase 13

Tech Free

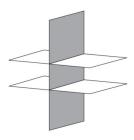
[3 marks]

Question 1

QUESTION 1 Simple Familiar Technology Free

The indefinite integral $\int \frac{3x-A}{1-x^2} dx$ can be determined using the partial fractions $\frac{-1}{1+x} + \frac{2}{1-x}$

The value of A is


- (A) -3
- (B) -1
- (C) 1
- (D) 3

Question 2

QUESTION 9

The geometric interpretation of a certain system of three equations with no solution is shown.

Simple Familiar Technology Free 2023

Given two of the equations are x + y - z = 0.5 and x - y - z = 0.5, the third equation could be

- (A) 2x 2y 2z = 1
- (B) 2x + 2y 2z = 1
- (C) 2x 2y + 2z = 3
- (D) 2x + 2y 2z = 3

Question 3		
QUESTION 11 (5 marks)		Simple Familiar
Let $f(x) = \tan^{-1}\left(\frac{x}{2}\right)$ for suitable values of x where $f(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.		Technology Free 2021
a) Determine $f(2)$.	[1 mark]	
b) Determine $f'(2)$.	[2 marks]	
c) Use the results from Questions 11a) and 11b) to determine the equation of the tangent to the graph of $y = f(x)$ at $x = 2$.	[2 marks]	
Question 4		
QUESTION 11 (6 marks)		Simple Familiar
The position vector of a particle, $r_1(cm)$, over time, $t(s)$, is given by		Technology Free
$\mathbf{r}_1(t) = (2t+1)\hat{\mathbf{i}} + (t+3)\hat{\mathbf{j}} - (2t-3)\hat{\mathbf{k}}$		2022
a) Determine the velocity vector of the particle.	[1 mark]	
 b) Determine the time when the position vector of the particle is perpendicular to its velocity vector. 	[2 marks]	
The position vector of a second particle, $r_2(cm)$, over time, $t(s)$, is given by		
$r_2(t) = (16 - 4t)\hat{i} - (3t - 13)\hat{j} + 2\hat{k}$		

c) Determine whether the two particles collide.