\hat{p} r $\sigma \hat{j}e$ c $au^{_{152}}$

Phase 5

Tech Free

Question 1

QUESTION 3

An object has a velocity $v(t) = e^{-2t}\hat{i} + \left(\frac{1}{t}\right)\hat{k}$, where t represents time (t > 0).

Simple Familiar Technology Free 2021

The displacement r(t) of the object could be

(A)
$$-2e^{-2t}\hat{i} + \ln(t)\hat{k}$$

(B)
$$-2e^{-2t}\hat{i} - \frac{1}{t^2}\hat{k}$$

(C)
$$-\frac{1}{2}e^{-2t}\hat{\boldsymbol{i}} + \ln(t)\hat{\boldsymbol{k}}$$

(D)
$$-\frac{1}{2}e^{-2t}\hat{i} - \frac{1}{t^2}\hat{k}$$

Question 2

QUESTION 6

Simple Familiar Technology Free

The Cartesian equation for a sphere with centre (-2, 3, -4) and radius 9 is

(A)
$$(x-2)^2 + (y+3)^2 + (z-4)^2 = 9$$

(B)
$$(x+2)^2 + (y-3)^2 + (z+4)^2 = 9$$

(C)
$$(x-2)^2 + (y+3)^2 + (z-4)^2 = 81$$

(D)
$$(x+2)^2 + (y-3)^2 + (z+4)^2 = 81$$

Question 3

OUESTION 1

Simple Familiar Technology Free

2022

Let z = a + 3i and w = -3 + bi, where $a, b \in R$.

,

If z = w, then

(A)
$$a = -3, b = -3$$

(B)
$$a = -3, b = 3$$

(C)
$$a = 3, b = -3$$

(D)
$$a = 3, b = 3$$

Question 4

QUESTION 14 (6 marks)

An object is projected vertically upwards from ground level. After the object has been in motion for *t* seconds, its position vector through the air, in metres, is modelled by

Simple Familiar Technology Free 2021

$$r(t) = 5t(8-t)\hat{j}$$

a) Determine the velocity of the object through the air, v(t), in metres per second.

[2 marks]

b) Determine the number of seconds until the object reaches its maximum height.

[2 marks]

c) Determine the maximum height that the object reaches, in metres.

[2 marks]

Question 5

QUESTION 16 (6 marks)

Complex Familiar Technology Free

Given $\cos(\theta) \neq 0 \ \forall \ n \in \mathbb{Z}^+$, use mathematical induction to prove

$$\cos(\theta)-\cos(3\theta)+\cos(5\theta)-\ldots+(-1)^{n+1}\cos((2n-1)\theta)=\frac{1-(-1)^n\cos(2n\theta)}{2\cos(\theta)}$$