\hat{p} r $\sigma \hat{j}e$ c $au^{^{152}}$

Phase 3

Tech Free

Question 1

-2

(D) -2 -5

Simple Familiar QUESTION 5 Technology Free The augmented matrix shown is produced when a Gaussian elimination technique is used to solve a certain system of equations with three variables. 2021 [1 1 -3 4] 0 -1 5 -6 0 0 1 0 The geometric interpretation of the solution to this system of equations is best represented by (A) (B) (C) Question 2 Simple Familiar **QUESTION 2** Technology Free When using proof by mathematical induction to show that n(2n-1)(2n+1) is divisible by $3 \forall n \in \mathbb{Z}^+$, the inductive step requires proving 2020 (A) (k+1)(2k)(2k+2) is divisible by 3. (B) (k+1)(2k)(2k+3) is divisible by 3. (C) (k+1)(2k+1)(2k+2) is divisible by 3. (D) (k+1)(2k+1)(2k+3) is divisible by 3. **Question 3 QUESTION 10** Simple Familiar Technology Free A plane is represented by the equation x - 2z = 5. A vector normal to this plane is 2022 (A) -2 5 (B) 0 2 (C) 0

Question 4				
QUESTION 12 (8 marks)			Simple Familiar Technology Free	
Consider the plane $x - y - 2z = 15$.			2021	
a)	Determine a vector \boldsymbol{n} that is perpendicular to the plane.	[1 mark]		
b)	Determine the vector equation of the line / that is perpendicular to the plane and contains the point $A(-2, 1, 3)$.	[1 mark]		
c)	Use the result from Question 12b) to express the equation of the line l in parametric form.	[1 mark]		
The line <i>l</i> and the plane intersect at point S.				
d)	Show that the coordinates of S are $(2, -3, -5)$.	[3 marks]		
e)	Determine \overrightarrow{AS} .	[1 mark]		
f)	Use a property of parallel vectors to verify that \overrightarrow{AS} and <i>n</i> are parallel.	[1 mark]		
Question 5				
QUESTION 16 (7 marks)			Complex Familiar Technology Free	
Consider this system of equations that corresponds to three planes.				
	x + 5y = 1 + 2z			

	x + z = 3y + 3	
	$8y - \lambda = 3z$	
a)	Use a Gaussian technique to determine the value of λ for which this system of equations has infinitely many solutions.	[4 marks]
b)	Use the result from Question 16a) to determine the infinitely many solutions. Express your answer in the form of a vector equation of a line.	[3 marks]