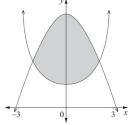
# Phase 10

# Tech Active

### Question 1

**OUESTION 8** Simple Familiar **Technology Active** Given  $f(x) = \tan^{-1}(2x)$ , determine f'(3).

- (A) 0.05
- (B) 0.15
- (C) 2.17
- (D) 3.10


### Question 2

**QUESTION 2** 

Determine the area of the shaded region between the graphs of the functions  $y = \frac{1}{3}\sec\left(\frac{x}{3}\right)$  and  $y = 2\cos\left(\frac{x}{2}\right)$ , as shown.

Simple Familiar **Technology Active** 

2023



- Not to scale
- (A) 5.29 units<sup>2</sup>
- (B) 5.51 units<sup>2</sup>
- (C) 5.65 units<sup>2</sup>
- (D) 5.71 units<sup>2</sup>

#### Question 3

**QUESTION 3** Simple Familiar **Technology Active** Given that 2i is a root of  $z^2 - pz - q = 0$ , where  $p, q \in R$ , determine the values of p and q.

- (A) p = -4 and q = -4
- (B) p = -4 and q = 4
- (C) p = 0 and q = -4
- (D) p=0 and q=4

Question 4

Simple Familiar QUESTION 12 (7 marks) **Technology Active** Consider the complex number z = -3 + 2i.

a) Determine  $z^3$  using the binomial theorem. Leave your answer in the form a+bi, where  $a, b \in R$ .

[2 marks]

b) Convert z into the form of  $r \operatorname{cis}(\theta)$ , where  $-\pi < \theta \le \pi$ .

[1 mark]

c) Use the result from Question 12b) to determine  $z^3$  using De Moivre's theorem. Leave your answer in the form of  $r \operatorname{cis}(\theta)$ , where  $-\pi < \theta \le \pi$ .

[2 marks]

[2 marks]

d) Evaluate the reasonableness of your results from Questions 12a) and 12c), noting that the two methods to determine  $z^3$  should produce the same result.

Question 5

**QUESTION 18 (6 marks)** 

Complex Unfamiliar Technology Active

Consider the polynomial  $P(z) = z^3 + az^2 + bz + c$ , where  $a, b, c \in R$  and  $z \in C$ .

Two of the roots of P(z) are also roots of  $z^4 + z^3 + z^2 + z + 1$ . The remaining root of P(z) is z = 2.

Given  $z^5 - 1 = (z - 1)(z^4 + z^3 + z^2 + z + 1)$ , determine a possible expression for P(z).

Leave your answer in expanded form.