$\hat{p}{ }_{\mathbb{R}} \sigma \hat{\jmath} e \subset \tau^{152}$

Phase 1
Tech Free

Question 1	
QUESTION 8 Let $P(n)$ be the proposition that $\sum_{r=1}^{n}(r+1) 3^{r-1}=n \times 3^{n} \forall n \in Z^{+}$ Which option represents a correct formulation of the assumption that $P(k)$ is true $\forall k \in Z^{+}$in a proof using mathematical induction? (A) $\sum_{r=1}^{k}(k+1) 3^{k-1}=k \times 3^{k}$ (B) $\sum_{r=1}^{k}(k+1) 3^{k-1}=n \times 3^{n}$ (C) $\sum_{r=1}^{k}(r+1) 3^{r-1}=k \times 3^{k}$ (D) $\sum_{r=1}^{k}(r+1) 3^{r-1}=r \times 3^{r}$	Simple Familiar Technology Free 2021
Question 2	
QUESTION 6 Given $z=2-2 i$ and $w=-3+i$, calculate $z^{2}-\bar{w}$ (A) $3-9 i$ (B) $3-7 i$ (C) $11-9 i$ (D) $11-7 i$	Simple Familiar Technology Free 2020
Question 3	
QUESTION 4 Consider points A and B as shown. The position vector representing the midpoint of $A B$ is (A) $\left(\begin{array}{c}5 \\ 8.5 \\ 10\end{array}\right)$ (B) $\left(\begin{array}{c}5 \\ 10 \\ 8.5\end{array}\right)$ (C) $\left(\begin{array}{c}10 \\ 8.5 \\ 5\end{array}\right)$ (D) $\left(\begin{array}{c}10 \\ 5 \\ 8.5\end{array}\right)$	Simple Familiar Technology Free 2020

Question 4		
QUESTION 12 (8 marks) Consider the vertices A, B and C of the rectangular prism as shown. a) State the coordinates of A, B and C . b) Determine a unit vector, $\hat{\boldsymbol{n}}$, that is normal to the plane containing A, B and C . c) Verify that \hat{n} is perpendicular to $\overrightarrow{A B}$. d) Determine the Cartesian equation of the plane that contains A, B and C .	[1 mark] [3 marks] [2 marks] [2 marks]	Simple Familiar Technology Free 2020
Question 5		
QUESTION 16 (6 marks) Use mathematical induction to prove that $2^{2 n}+3 n-1$ is divisible by $3 \forall n \in Z^{+}$.		Complex Familiar Technology Free 2021

